Identifying Latent Groups in Spatial Panel Data Using a Markov Random Field Constrained Product Partition Model

نویسندگان

چکیده

Understanding the heterogeneity over spatial locations is an important problem that has been widely studied in many applications such as economics and environmental science. In this paper, we focus on regression models for panel data analysis, where repeated measurements are collected time at various locations. We propose a novel class of nonparametric priors combines Markov random field (MRF) with product partition model (PPM), show resulting prior, called by MRF-PPM, capable identifying latent group structure among while efficiently utilizing dependence information. derive closed-form conditional distribution proposed prior introduce new way to compute marginal likelihood renders efficient Bayesian inference. further study theoretical properties MRF-PPM clustering consistency result posterior distribution. demonstrate excellent empirical performance our method via extensive simulation studies US precipitation California median household income study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Latent Structures in Panel Data

This paper provides a novel mechanism for identifying and estimating latent group structures in panel data using penalized regression techniques. We focus on linear models where the slope parameters are heterogeneous across groups but homogenous within a group and the group membership is unknown. Two approaches are considered — penalized least squares (PLS) for models without endogenous regress...

متن کامل

Spatial Correlation Testing for Errors in Panel Data Regression Model

To investigate the spatial error correlation in panel regression models, various statistical hypothesizes and testings have been proposed. This paper, within introduction to spatial panel data regression model, existence of spatial error correlation and random effects is investigated by a joint Lagrange Multiplier test, which simultaneously tests their existence. For this purpose, joint Lagrang...

متن کامل

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Combining time DEA scores using a dynamic panel data model

We define a combined DEA score to evaluate efficiency in agricultural research. The production model we propose considers efficiency measurements under variable returns to scale for each year in the period 2012–2017. We postulate a first-order autoregressive process in the presence of covariates, to explain efficiency. Powers of the autocorrelation coefficient estimated assuming a dynamic panel...

متن کامل

A Markov Random Field-based Approach to Characterizing Human Brain Development Using Spatial-temporal Transcriptome Data.

Human neurodevelopment is a highly regulated biological process. In this article, we study the dynamic changes of neurodevelopment through the analysis of human brain microarray data, sampled from 16 brain regions in 15 time periods of neurodevelopment. We develop a two-step inferential procedure to identify expressed and unexpressed genes and to detect differentially expressed genes between ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistica Sinica

سال: 2024

ISSN: ['1017-0405', '1996-8507']

DOI: https://doi.org/10.5705/ss.202021.0247